
Source Control
• Duane Strong

• Strong Engineering LLC

• duanes@strongenging.com

• Manages what can easily become total chaos.

• Part of a larger concern called Software Configuration Management

The task of tracking and controlling changes in the software. SCM
practices include revision control and the establishment of baselines. If
something goes wrong, SCM can determine what was changed and
who changed it. If a configuration is working well, SCM can determine
how to replicate it across many hosts.

• Provides traceability from feature or change request to
implementation.

• Establishes tested baselines

• Establishes a set of requirements for change acceptance

What is it?

Why do we need it?
Any sufficiently large project becomes (mostly?) an exercise in
containing complexity.

The nature of software development is such that it constantly tries to
become just more complicated than humans can understand. Entropy
is constant.

Why do we need it?
• Team Co-ordination

• Provides an authoritative source

• Time Machine, can always get back to a prior version

• Back up

• Historian - Why did we do that?
• Commit logs

• Issue reference

• Branches - Multiple Development Timelines
• Allows feature development and bug fixes without disturbing the main time

line

What do you put in it?
• Anything

• Not just software

• This presentation

• Maybe not huge things

• Once you get used to the safety net you want it

• Everything
• Information radiator

• Never have to ask someone for a document

• Other tools might be better (wiki, ERP)

• Not generated items

• Not 3rd party SDKs, etc.

A Little History
SCCS (1972) RCS (1982)

Like a library book

Where the term 'checkout' comes from.

• Files locked by one person at a time

• Hard to collaborate, usually not working on the same part of a file

• Promotes cheating

A Little History
• CVS (1986) Multiple concurrent checkouts

• No locking

• Must ‘update’ prior to commit

• Diffing, merging. Context aware diff

• What is a conflict?

• SVN (2000) Improved CVS
• Atomic commits

• Change sets have versions not files

• Database

• Improved network transports

A Little History
• Git (2005) Linus Torvalds

• Distributed – everyone has an entire repository copy

• No diffs, whole versions (storage is cheap)

• Open source projects have special requirements

• Distributed teams

• Replicated repository, push/pull

Git – how does it work?
• Clone local copy of the repo (.git)

• Central server not required

• Not delta based

• Every change is an entire new copy

Git – how does it work?
• Blobs and the magic of SHA

• 160 bits long about 1048

A trillion people generating a trillion new blobs

per second for a trillion years is only 1043

• Associative memory

• What is a blob?
• Files

• Trees

• Commits

• Tags

• Instantaneous branching

Git - terminology
• Cloning

• Origins

• Remote tracking branches

• Master branch

• Feature/Issue branch

• Working directory

Git Terminology
• Staging

• Commit

• Push

• Pull (Fetch + Update)

• Refs
• HEAD

• Tags

• Remotes

Git
• Staging changes

• git add (new and modified)

• git rm

• git mv (not really necessary)

• Commit
• Atomic

• git commit

• Enter meaningful commit messages. Not "updated' or "fixed".

• Push
• git push

Git
• git status

• .gitignore
• Cascades

• Branching
• git branch

• git checkout

Checkout changes files in your working directory – tries to not let you
mess up

Git
• Stashes

• Merging
• git merge

• Conflicts
<<<<<<< HEAD:index.html

<div id = footer> contact : email.support@github.com</div>

=======

<div id = footer>

 please contact us at email.support@github.com</div>

</div>

>>>>>>> mybranch:index.html

mailto:email.support@github.com%3c/div
mailto:email.support@github.com%3c/div

Git Frontends
• Command line 'porcelain’

• I almost never use

• Visual Studio

• Eclipse eGit

• SourceTree

• Tortoise

• Github / Gitlab web interfaces

Workflows
• Never commit directly to master branch.

• Create branch for an issue

• All work reviewed by at least one other pair of eyes
• Bugs are exponentially more expensive to fix the farther down the process

they live

• Keeps at least one other team member in the loop

• All work should be traceable back to an issue.

• Merge to master branch
• Use tools to enforce an acceptance criteria

Don’t be one of those people
• Learn your tools well and know what they can do for you.

• Enter meaningful commit messages. Not "updated' or "fixed".

• Don’t commit junk files (.o .bin)
• Use .gitignores to filter out files/directories that should not be checked in

• .gitignore is applied cascading down the directory hierarchy. It is considered
rude to filter out generic names at the root folder.

• Don’t commit settings that are particular to your workstation (install
paths etc.).

Don’t be one of those people
• Have healthy respect (fear?) when pushing. You are affecting others

lives.

• Don't just add all to git staging. Carefully pick the files to stage. Diff
them to head to make sure you didn't leave something in you did not
mean to.

• If you break the build you will be in the dog house. Most projects
have multiple dependencies.

Mono repo vs. multi repos
• How much do I put into one repo?

• Cross project commits / code sharing / code access

• Atomic commits

• Submodules
• Another repo as a subdir
• Tracks at what commit that repo should be
• Not really connected to each other

• Subtrees
• Another repo as a subdir
• Requires user to not mix commits
• Requires multiple steps for merge

• Side by side repos – not a repo

Q & A

	Slide 1: Source Control
	Slide 2: What is it?
	Slide 3: Why do we need it?
	Slide 4: Why do we need it?
	Slide 5: What do you put in it?
	Slide 6: A Little History
	Slide 7: A Little History
	Slide 8: A Little History
	Slide 9: Git – how does it work?
	Slide 10: Git – how does it work?
	Slide 11: Git - terminology
	Slide 12: Git Terminology
	Slide 13: Git
	Slide 14: Git
	Slide 15: Git
	Slide 16: Git Frontends
	Slide 17
	Slide 18
	Slide 19: Workflows
	Slide 20: Don’t be one of those people
	Slide 21: Don’t be one of those people
	Slide 22: Mono repo vs. multi repos
	Slide 23: Q & A

