
Recommendations for
Software Process
Improvement

• Duane Strong

• Strong Engineering LLC

• duanes@strongenging.com

Introduction
As a consultant, I get to see how many different companies develop
software. Something I found interesting was how similar many of
these companies were in terms of weaknesses in their software
process. This presentation is a collection of recommendations I propose
time and time again. These are just the most basic recommendations.

This presentation will propose a number of recommendations to
improve the quality and time to market of software components. These
recommendations are well known in the software engineering
discipline and have been documented by a number of case studies that
show improvement in the software process in terms of fewer bugs,
faster time to market, and a higher level of satisfaction by the end users
of the software components.

Organizational and Coding
The recommendations are split into two groups; organizational, and
coding.

The organizational recommendations are more about how the
department is run.

The coding requirements are more about what the department
produces.

In each section the recommendations are in the order of their
importance.

Organizational-Invest in Process Improvement
Implementing these recommendations and keeping them current will
require a large amount of someone’s time.

Establish an official position (software manager, software lead,
architect, etc.) and task that person with the responsibility of
implementing these recommendations. This will take time away from
production coding by that person especially at first, and always by
some percent of their time.

Realize that this is an investment no different than a capital investment
that will pay back in the long term. Realize that by not doing so you will
be creating long term problems that directly affect the quality of your
product and result in higher cost overall.

Organizational-Collect, organize, and centralize
information

Establish an internal web site, cloud service or source control that contains all
the documentation pertaining to the software department and the products it
produces.

A team member should never have to ask someone to dig up a document from
his or her personal workstation.

Consider also keeping these documents under source control.

Consider using a Wiki web server extension for collaborative documentation.

Consider using markdown syntax and keeping the documentation along side the
code it speaks to.

Establish a standard ‘look’ for documents using an html template or standard
Word template. Document all software standards and development tool setups.

Organizational-Establish coding conventions
Document conventions for how code should be written. Enforce
adherence to the conventions by team members.

This is the time to re-evaluate past practices and learn from those who
have done this before.

There are many excellent books on this topic, some are listed in the
References at the end of this presentation.

Organizational-Improve the specification process
Many specifications I see are of the ‘stream of consciousness’ type
because they are an attempt to record the thought process of the
engineer after they have produced an artifact. Specifications need to
be written before the action of writing the software has begun. Yes
even in agile! It is not possible to schedule a software effort without
some type of specification up front.

Specifications need not be overly verbose and should fit into an overall
methodology. Some companies like Big Upfront Design where specs
are huge and unchanging and the process is a waterfall model. Others
like Agile or Extreme processes where the spec is under constant
change and many small iterations of software are produced.

Organizational-Improve the specification process
In agile environments the specification can be represented by the
stories in the backlog. Even then those stories need to be traceable
back to a requirements specifications.

A requirements specification usually originates via inputs from a
marketing department or by the Product Owner and can be quite
succinct.

These inputs need to be organized by the engineering department to
ensure that the requirements are technically feasible.

Organizational-Document the schedule
A schedule for the software should be generated and documented. A
simple spreadsheet is all that is required for this, not Microsoft Project.

Tasks should be identified from the specification and broken down into
a granularity no larger than a numbers of days (or even hours.) See
Painless Software Schedules in the reference section.

Ideally once the tasks are sufficiently broken down the size of a story
becomes the “work unit” and the schedule can be estimated just from
the count of stories, without the need for spreadsheets or other
means.

Organizational-Share code in source control
Most of the time code is shared (if at all) via a ‘cut and paste’ method
where multiple divergent copies are present in a number of source
control projects.

These should all be pulled from the same source file in source control
and used directly in all projects. Source control should represent the
Intellectual Property Library of the company and should be leveraged
into as many products as possible.

This may require some refactoring of the source code to allow for
better configuration in each platform where it is used. The sources
should be packaged into multiple folders where each folder represents
a stand-alone highly cohesive component with minimal coupling to
other components.

Organizational-Implement code reviews
Before any code is released (or even merged to a main branch) it
should be reviewed by a selection of team members.

Bugs caught at this phase have been shown to be exponentially less
costly than at later stages.

A formal review process should be established where the author must
present the source and comments/suggestions are recorded and action
items assigned. Consider using an online review system like GitHub or
GitLab.

Organizational-Use Issue/Bug tracking software
There are many excellent products on the market for tracking issues
and bugs. Resist the temptation to use a spreadsheet!

Keep all discussions, data, photos, charts etc. concerning the bug or
issue in the bug or issue tracker. Do not have email, Slack, Teams or
whatever conversations that are not part of the bug or issue tracker.

This data is extremely valuable to the company as time goes on and can
be “mined” for all types of information.

Organizational-Implement unit testing
Require developers to test their own code first by writing unit tests.

These catch many bugs before they get to system integration and SQA
where they cost much more to fix.

Consider using a unit test framework similar to JUnit for Java.

Some organizations drive development from the unit tests in a test
driven development environment.

Having a robust set of unit tests makes regression testing of a new
release much easier and less risky.

Organizational-Automatic documentation generator

Documentation beyond a high level software specification can be done
by inserting special comments into the source.

These ‘Java Doc’ comments can be extracted into nice looking PDF or
HTML documents automatically by tools such as Doxygen
www.doxygen.org

http://www.doxygen.org/

Organizational-Establish automatic nightly builds

A system that automatically builds all products each night or at each
merge catches problems introduced when modifying shared code.

Getting this information in a timely fashion is important to keep
shipping product’s code bases intact while implementing new products
and features.

A system that can archive each build is very useful for testing as it can
pinpoint when a problem emerges.

Coding-No warnings on the build

Establish a goal to have no warnings on the build.

Too many warnings and the important (crash inducing) ones are missed
among the noise.

While it may not be possible to eliminate them totally, this should be
the goal. No more than a page full for an entire build should be
tolerated.

A warning from the compiler is your friend. It is trying to tell you
something important.

Coding-Reduce #ifdef and #define

Establish a goal to reduce or eliminate #ifdef and #define.

Platform configuration via #ifdef results in spaghetti code that is
difficult to maintain. Try to drive configuration from the makefile and
use different include paths to pick up variation in implementations.

The C preprocessor has many documented problems that cause many
types of errors.

C++ offers facilities that can lessen the dependence on the
preprocessor. Refactoring using configuration classes, enumerations,
and inline functions can eliminate #ifdefs and #defines.

Coding-Eliminate global variables

Globals are a source of bugs and usually indicate system architecture
that has not been thought through.

These can be eliminated through the use of the singleton pattern and
other techniques.

Coding-Reduce class sizes

Many times the code base has some monster sized classes.

These are too complex to be effectively reused in other environments.

Consider splitting them up into classes that are combined into an
overall class via composition.

Coding-Reduce source file sizes

Source file sizes should not exceed a few tens of kilobytes.

Files that exceed this indicate that they need to be broken up into
smaller classes or simply fewer classes per file.

References
The Joel Test: 12 Steps to Better Code
http://www.joelonsoftware.com/articles/fog0000000043.html

Painless Software Schedules
http://www.joelonsoftware.com/articles/fog0000000245.html

Rapid Development, McConnel, Microsoft Press, 1996
https://www.amazon.com/gp/product/1556159005

Code Complete 2nd edition, McConnel, Microsoft Press, 2004
https://www.amazon.com/gp/product/0735619670

C++ Coding Standards, Sutter and Alexandrescu, Addison Wesley, 2005
https://www.amazon.com/Coding-Standards-Rules-Guidelines-
Practices/dp/0321113586/

http://www.joelonsoftware.com/articles/fog0000000043.html
http://www.joelonsoftware.com/articles/fog0000000245.html
https://www.amazon.com/gp/product/1556159005
https://www.amazon.com/gp/product/0735619670
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586/
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586/

Q & A

	Slide 1: Recommendations for Software Process Improvement
	Slide 2: Introduction
	Slide 3: Organizational and Coding
	Slide 4: Organizational-Invest in Process Improvement
	Slide 5: Organizational-Collect, organize, and centralize information
	Slide 6: Organizational-Establish coding conventions
	Slide 7: Organizational-Improve the specification process
	Slide 8: Organizational-Improve the specification process
	Slide 9: Organizational-Document the schedule
	Slide 10: Organizational-Share code in source control
	Slide 11: Organizational-Implement code reviews
	Slide 12: Organizational-Use Issue/Bug tracking software
	Slide 13: Organizational-Implement unit testing
	Slide 14: Organizational-Automatic documentation generator
	Slide 15: Organizational-Establish automatic nightly builds
	Slide 16: Coding-No warnings on the build
	Slide 17: Coding-Reduce #ifdef and #define
	Slide 18: Coding-Eliminate global variables
	Slide 19: Coding-Reduce class sizes
	Slide 20: Coding-Reduce source file sizes
	Slide 21: References
	Slide 22: Q & A

