
Methods of
Hardware Access in
C++
 Duane Strong

Strong Engineering LLC

duanes@strongenging.com

Introduction
This presentation evaluates different methods for manipulating
memory mapped hardware in a C++ environment.

Alternatives are discussed and the resulting assembly code is examined
for efficiency.

GCC Intel x86 disassembly is shown in the examples.

Requirements

In an embedded system hardware register access is usually provided by
direct addressing in the processors memory map.

These systems require efficient access to these locations and typically
involve individual bit manipulations in each register.

In many cases blocks of registers are semantically bound together and
an interface that reflects this grouping is desirable.

Using the #define for everything method

In this method the addresses of hardware registers are represented by
preprocessor symbols containing a typecast of a constant integer
address to the proper type for the register.

#define MBAR_ADDRESS (0x10000000)

#define UART1_BASE_ADDRESS (MBAR_ADDRESS + 0x100) /* UART 1 base */

#define UART_UMR_PTR ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x00))

#define UART_USR_UCSR_PTR ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x04))

#define UART_UCR_PTR ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x08))

Using the #define for everything method

Individual bits in registers are represented by more preprocessor
symbols. These symbols are combined by hand using bitwise logical
operators.

/* UART Mode Register bits */

#define UMR1_OP (0x04) /* odd parity */

#define UMR1_BPC(n) (n-5) /* number of bits per char 5,6,7,8 */

/* UART Command Register bits */

#define UCR_RESET_RX (0x20) /* reset receiver */

/* UART Status Register bits */

#define UART_STS_OVERRUN_ERR (0x10)

Using the #define for everything method

Using these preprocessor symbols as pointers affords the register
access.

*UART_UMR_PTR = UMR1_BPC(8) | UMR1_OP;
*UART_UCR_PTR = UCR_RESET_RX;
if(*UART_USR_UCSR_PTR & UART_STS_OVERRUN_ERR) {
 do something about overrun error;
}

This approach generates very efficient code.

 movb $7, 268435712
 movb $32, 268435720
 movzbl 268435716, %eax
 testb $16, %al
 je L2
 # basic block 1
 movb $1, %bl
L2:

Using the #define for everything method

This approach suffers from a few weaknesses. First the use of the
preprocessor is undesirable for the following reasons:
• The symbols have global scope in the module and therefore

necessitates the practice of pre-pending all symbols with some kind
of group name.

• The symbols are not a proper part of the C++ language and therefore
have no type and are not conveyed to the debugger.

• Numerous known problems with preprocessor syntax such as
unintended concatenation requiring copious parenthesis.

Secondly there is no semantic grouping of related elements. Groups of
registers are still distinct entities, and bit definitions are not bound to
particular registers allowing their use on the wrong register.

Using structures or classes and enumerations

As an evolution of the previous method, structures may be used to group
semantically related registers. This reduces dependence on the preprocessor,
and imparts type information to each register symbol. It also establishes a
name scope in which the register names are bound.

struct UartRegs
{
 volatile unsigned char ucUmr; // mode registers 1/2 (rw - flips to other
reg)
 unsigned char skip[3];
 volatile unsigned char ucUsrUcsr; // status register(r) + clock select
register (w)
 unsigned char skip1[3];
 volatile unsigned char ucUcr; // command register (wo)
 unsigned char skip2[3];
 .
 .
 .
}

Using structures or classes and enumerations

This technique comes with an important caveat. Compilers are allowed
to insert extra space between structure elements that are invisible to
the programmer to allow for more efficient alignment of the elements
in the data structure.
These extra elements would cause the structure to incorrectly map to
the hardware and must not be allowed. Compiler “pack” options or
pragmas can be used to eliminate them.
Usually the hardware designer will create the hardware addressing of
registers on native alignment boundaries and the subsequent structure
mapping will end up natively aligned without extra space inserted.
Nevertheless it is important to check this in all cases.

Using structures or classes and enumerations

While not technically necessary, changing the struct to a class yields a more
familiar context to add public and protected sections, enumerations scoped
inside the class, and inline macros to replace preprocessor macros.

The use of enumerations for integral constants is preferred over const
unsigned because enumerations provide a one step declaration and
assignment, and there are cases where the compiler can not eliminate
creating storage for the const since the optimizer can not always tell if no
code is going to take the address of the constant, whereas enumerations are
always only used as immediate operands because a reference to an enum is
not allowed.

Using structures or classes and enumerations
class UartRegs
{
public:
 volatile unsigned char ucUmr; // mode registers 1/2 (rw - flips to other reg)
 unsigned char skip[3];
 volatile unsigned char ucUsrUcsr; // status register(r) + clock select register (w)
 unsigned char skip1[3];
 volatile unsigned char ucUcr; // command register (wo)
 unsigned char skip2[3];
 .
 .
 .

 enum tUmrBits {
// UART Mode Register bits
 OP = 0x04, // odd parity
 };
 static inline unsigned char BPC(int n) { return n-5; }

 enum tUsrUcsrBits {
// UART Status Register bits
 ERR_MASK = 0xF0, // mask for error bits
 RCVD_BREAK = 0x80,
 FRAMING_ERR = 0x40,
 PARITY_ERR = 0x20,
 OVERRUN_ERR = 0x10,
 };

 enum UcrBits {
// UART Command Register bits
 RESET_RX = 0x20, // reset receiver
 RESET_TX = 0x30, // reset transmitter
 RESET_ERR = 0x40, // reset error status
 };

};

#define UART_PTR_1 ((volatile UartRegs *)(MBAR_ADDRESS + 0x100))

Using structures or classes and enumerations

Using these structure fields off the base address macro affords the register access.

// class and enum method
UART_PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
UART_PTR_1->ucUcr = UartRegs::RESET_RX;

if(UART_PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR) {
 do something about overrun error;

}

This approach generates very efficient code, the same as before as long as compiler
optimizations (-O) are enabled.
 # basic block 2
 movb $7, 268435712
 movb $32, 268435720
 movzbl 268435716, %eax
 testb $16, %al
 je L4
 # basic block 3
 movb $1, %bl
L4:

Using structures or classes and enumerations

To eliminate the last remnant of the preprocessor, and bind the symbol for the
address of the register block into the scope of the class the following constant is
added to the class:

 static UartRegs * const PTR_1; /* UART 1 base address */

};

UartRegs * const UartRegs::PTR_1 = (UartRegs *) (MBAR_ADDRESS + 0x100);

Using these structure fields off the base address class constant affords the register
access.
// const pointer method
UartRegs::PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
UartRegs::PTR_1->ucUcr = UartRegs::RESET_RX;

if(UartRegs::PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR) {
 do something about overrun error;
}

Using structures or classes and enumerations

This approach generates the same as before , with the addition of an unused
constant in the text section. This is due to the explanation above requiring
constants to allow for the possibility of code taking the address of the
constant.

.globl __ZN8UartRegs5PTR_1E
 .text
 .align 4
__ZN8UartRegs5PTR_1E:
 .long 268435712
.
.
.
 # basic block 4
 movb $7, 268435712
 movb $32, 268435720
 movzbl 268435716, %eax
 testb $16, %al
 je L6
 # basic block 5
 movb $1, %bl
L6:

Using structures or classes and enumerations

Additionally this requires the definition of the constant to only be
present in a single translation unit, or a multiply defined global error
will result. Alternatively the constant can be left out of the class and
declared static such that it only has module scope. This no longer
binds the symbol to the class name
static UartRegs * const CONST_UART_PTR_1 = (UartRegs *) (MBAR_ADDRESS + 0x100);

Using these structure fields off the base address module constant
affords the register access.
// const static pointer method
CONST_UART_PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
CONST_UART_PTR_1->ucUcr = UartRegs::RESET_RX;

if(CONST_UART_PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR) {
 do something about overrun error;
}

Using structures or classes and enumerations

This approach generates the same code as before , with the same
unused constant in the text section. However this time it is at least
not global and can be re-defined in each module.

_ZZ4mainE16CONST_UART_PTR_1:
 .long 268435712
.
.
.
 # basic block 6
 movb $7, 268435712
 movb $32, 268435720
 movzbl 268435716, %eax
 testb $16, %al
 je L8
 # basic block 7
 movb $1, %bl

Using bitfields in classes

As an additional aid to the programmer, individual bits in registers can be broken out symbolically into bitfields.

class UartBits
{
public:
 // mode register
 volatile unsigned char ucBits : 2;
 volatile unsigned char ucOddP : 1;
 volatile unsigned char ucForceP : 1;
 volatile unsigned char ucNp : 1;
 volatile unsigned char ucBlkErr : 1;
 volatile unsigned char ucIntFf : 1;
 volatile unsigned char ucAutoRts : 1;
 unsigned char skip[3];
 // status register
 volatile unsigned char ucBreak : 1;
 volatile unsigned char ucFrameEr : 1;
 volatile unsigned char ucParErr : 1;
 volatile unsigned char ucOverRun : 1;
 volatile unsigned char ucTxEmpty : 1;
 volatile unsigned char ucTxReady : 1;
 volatile unsigned char ucFFull : 1;
 volatile unsigned char ucRxReady : 1;
 unsigned char skip1[3];
 // command register
 volatile unsigned char ucAutoBd : 1;
 volatile unsigned char ucCommand : 3;
 volatile unsigned char ucTxDisab : 1;
 volatile unsigned char ucTxEnab : 1;
 volatile unsigned char ucRxDisab : 1;
 volatile unsigned char ucRxEnab : 1;
 unsigned char skip2[3];

Using bitfields in classes

unsigned char skip2[3];

 static inline unsigned char BPC(int n) { return n-5; }

 enum UcCommandBits {

// UART Command Register bits

 RESET_RX = 0x2, // reset receiver

 RESET_TX = 0x3, // reset transmitter

 RESET_ERR = 0x4, // reset error status

 };

};

// Base addresses as a macro

#define UARTBITS_PTR_1 ((volatile UartBits *)(MBAR_ADDRESS + 0x100))

Using bitfields in classes

Using these bitfields off the base address macro affords the register access.

// (partial) bitfield method
UARTBITS_PTR_1->ucBits = UartBits::BPC(8);
UARTBITS_PTR_1->ucOddP = 1;
UARTBITS_PTR_1->ucCommand = UartBits::RESET_RX;

if(UARTBITS_PTR_1->ucOverRun) {
do something about overrun error;
}

This approach generates less efficient code than the other methods.
 # basic block 8
 movzbl 268435712, %eax
 orb $3, %al
 movb %al, 268435712
 movzbl 268435712, %eax
 orb $4, %al
 movb %al, 268435712
 movzbl 268435720, %eax
 andb $-113, %al
 orb $32, %al
 movb %al, 268435720
 movzbl 268435716, %eax
 andb $16, %al
 testb %al, %al
 je L10
 # basic block 9
 movb $1, %bl

Using bitfields in classes

The bitfield approach has a number of problems. First bitfields are not
portable. It is left to each compiler to decide how the bits in the bitfields are
to be laid out. The first bit defined could be the most significant or the least.
In this particular case they are least to most significant. Furthermore
alignment issues as with structures exist but more so. Compilers can allocate
bit groups into bytes as they see fit for optimization.

Secondly the code generated is not efficient. In the example setting all bits in
a register to a known value was left out for clarity and would involve many
bit oriented operations where one register access would suffice. The use of
unions to make whole register access more efficient exacerbates the
portability problem as the mapping of union elements onto one another is
also left to the compiler.

Using bitfields in classes

Third the level of abstraction does not map to the reality of the hardware. In
this simple example there are problems caused by the way this hardware
works. The Uart mode register has interesting behavior in that each
successive access to the register flips the meaning of the register from mode
1 to mode 2. Individual read-modify-write operations of the bitfield access
causes the mode register to flip back and forth. In other cases the
programmer may want to check if any of a number of bits are active in a
register, to check if any error bits are on for example. In the bitfield case this
must be done with successive accesses and bit operations, where as in the
whole register approach it can be done in one test.

In summation the bitfield abstraction removes a level of control from the
programmer in favor of an abstraction that is not portable and does not map
to the hardware reality with good fidelity.

Recommendations

Using the class with enumerations offers benefits without
compromising code efficiency. Bitfields offer questionable benefit to
the programmer with a cost in code efficiency. Using a class constant
pointer to hold the base address of the register bank binds the pointer
to the class name, but causes a problem with multiply defined
constants and wastes storage (although a very small cost). Using a
module static constant as the base pointer does not bind the name to
any class and uses up additional space. The #define macro of the base
address seems to yield the same benefits as the module static without
the wasted space. The recommendation then is to use classes with
enumerations, and a #define for the base address.

References

1. Saks, Dan, “Mapping Memory,” Embedded Systems Programming, September 2004, p 49.
http://www.embedded.com/shared/printableArticle.jhtml?articleID=26807176

2. Saks, Dan, “Mapping Memory Efficiently,” Embedded Systems Programming, November 2004, p
47. http://www.embedded.com/shared/printableArticle.jhtml?articleID=50900224

3. Saks, Dan, “More Ways to Map Memory,” Embedded Systems Programming, December 2004.
http://www.embedded.com/shared/printableArticle.jhtml?articleID=55301821

4. Saks, Dan, “Symbolic Constants,” Embedded Systems Programming, November 2001 p 55.
http://www.embedded.com/shared/printableArticle.jhtml?articleID=9900352

5. Saks, Dan, “As Precise as Possible,” Embedded Systems Programming, April 2002, p 43.
http://www.embedded.com/shared/printableArticle.jhtml?articleID=9900563

6. Saks, Dan, “Representing and Manipulating Hardware in Standard C and C++,” Embedded
Systems Seminar Silicon Valley, August 3-4 2004, Westin Santa Clara, CA.

http://www.embedded.com/shared/printableArticle.jhtml?articleID=26807176
http://www.embedded.com/shared/printableArticle.jhtml?articleID=50900224
http://www.embedded.com/shared/printableArticle.jhtml?articleID=55301821
http://www.embedded.com/shared/printableArticle.jhtml?articleID=9900352
http://www.embedded.com/shared/printableArticle.jhtml?articleID=9900563

	Slide 1: Methods of Hardware Access in C++
	Slide 2: Introduction
	Slide 3: Requirements
	Slide 4: Using the #define for everything method
	Slide 5: Using the #define for everything method
	Slide 6: Using the #define for everything method
	Slide 7: Using the #define for everything method
	Slide 8: Using structures or classes and enumerations
	Slide 9: Using structures or classes and enumerations
	Slide 10: Using structures or classes and enumerations
	Slide 11: Using structures or classes and enumerations
	Slide 12: Using structures or classes and enumerations
	Slide 13: Using structures or classes and enumerations
	Slide 14: Using structures or classes and enumerations
	Slide 15: Using structures or classes and enumerations
	Slide 16: Using structures or classes and enumerations
	Slide 17: Using bitfields in classes
	Slide 18: Using bitfields in classes
	Slide 19: Using bitfields in classes
	Slide 20: Using bitfields in classes
	Slide 21: Using bitfields in classes
	Slide 22: Recommendations
	Slide 23: References

