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Introduction
This presentation evaluates different methods for manipulating 
memory mapped hardware in a C++ environment.

Alternatives are discussed and the resulting assembly code is examined 
for efficiency.

GCC Intel x86 disassembly is shown in the examples.



Requirements

In an embedded system hardware register access is usually provided by 
direct addressing in the processors memory map.

These systems require efficient access to these locations and typically 
involve individual bit manipulations in each register.

In many cases blocks of registers are semantically bound together and 
an interface that reflects this grouping is desirable. 



Using the #define for everything method

In this method the addresses of hardware registers are represented by 
preprocessor symbols containing a typecast of a constant integer 
address to the proper type for the register.

#define MBAR_ADDRESS (0x10000000)

#define UART1_BASE_ADDRESS    (MBAR_ADDRESS + 0x100) /* UART 1 base */

#define UART_UMR_PTR        ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x00))

#define UART_USR_UCSR_PTR   ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x04))

#define UART_UCR_PTR        ((volatile unsigned char *)(UART1_BASE_ADDRESS+0x08))



Using the #define for everything method

Individual bits in registers are represented by more preprocessor 
symbols. These symbols are combined by hand using bitwise logical 
operators.

/* UART Mode Register bits */

#define UMR1_OP            (0x04)   /* odd parity */

#define UMR1_BPC(n)        (n-5)    /* number of bits per char 5,6,7,8 */

/*    UART Command  Register bits */

#define UCR_RESET_RX       (0x20)   /* reset receiver */

/*    UART Status Register bits */

#define UART_STS_OVERRUN_ERR        (0x10)



Using the #define for everything method

Using these preprocessor symbols as pointers affords the register 
access.

*UART_UMR_PTR = UMR1_BPC(8) | UMR1_OP;
*UART_UCR_PTR = UCR_RESET_RX;
if( *UART_USR_UCSR_PTR & UART_STS_OVERRUN_ERR ) {
    do something about overrun error;
}

This approach generates very efficient code.

       movb    $7, 268435712
       movb    $32, 268435720
       movzbl  268435716, %eax
       testb   $16, %al
       je      L2
        # basic block 1
       movb    $1, %bl
L2:



Using the #define for everything method

This approach suffers from a few weaknesses. First the use of the 
preprocessor is undesirable for the following reasons:
• The symbols have global scope in the module and therefore 

necessitates the practice of pre-pending all symbols with some kind 
of group name.

• The symbols are not a proper part of the C++ language and therefore 
have no type and are not conveyed to the debugger. 

• Numerous known problems with preprocessor syntax such as 
unintended concatenation requiring copious parenthesis.

Secondly there is no semantic grouping of related elements. Groups of 
registers are still distinct entities, and bit definitions are not bound to 
particular registers allowing their use on the wrong register.



Using structures or classes and enumerations

As an evolution of the previous method, structures may be used to group 
semantically related registers. This reduces dependence on the preprocessor, 
and imparts type information to each register symbol. It also establishes a 
name scope in which the register names are bound.

struct UartRegs
{
    volatile unsigned char ucUmr;       // mode registers 1/2 (rw - flips to other 
reg)
    unsigned char skip[3];          
    volatile unsigned char ucUsrUcsr;   // status register(r) + clock select 
register (w)
    unsigned char skip1[3];
    volatile unsigned char ucUcr;       // command register (wo)
    unsigned char  skip2[3];
 .
 .
 .
}



Using structures or classes and enumerations

This technique comes with an important caveat. Compilers are allowed 
to insert extra space between structure elements that are invisible to 
the programmer to allow for more efficient alignment of the elements 
in the data structure.
These extra elements would cause the structure to incorrectly map to 
the hardware and must not be allowed. Compiler “pack” options or 
pragmas can be used to eliminate them. 
Usually the hardware designer will create the hardware addressing of 
registers on native alignment boundaries and the subsequent structure 
mapping will end up natively aligned without extra space inserted. 
Nevertheless it is important to check this in all cases.



Using structures or classes and enumerations

While not technically necessary, changing the struct to a class yields a more 
familiar context to add public and protected sections, enumerations scoped 
inside the class, and inline macros to replace preprocessor macros.

The use of enumerations for integral constants is preferred over const 
unsigned because enumerations provide a one step declaration and 
assignment, and there are cases where the compiler can not eliminate 
creating storage for the const since the optimizer can not always tell if no 
code is going to take the address of the constant, whereas enumerations are 
always only used as immediate operands because a reference to an enum is 
not allowed.



Using structures or classes and enumerations
class UartRegs
{
public:
    volatile unsigned char ucUmr;       // mode registers 1/2 (rw - flips to other reg)
    unsigned char skip[3];          
    volatile unsigned char ucUsrUcsr;   // status register(r) + clock select register (w)
    unsigned char skip1[3];
    volatile unsigned char ucUcr;       // command register (wo)
    unsigned char  skip2[3];
 .
 .
 .

    enum tUmrBits {
// UART Mode Register bits
        OP      = 0x04,     // odd parity
    };
    static inline unsigned char BPC( int n ) { return n-5; }

    enum tUsrUcsrBits {
// UART Status Register bits
        ERR_MASK        = 0xF0,     // mask for error bits 
        RCVD_BREAK      = 0x80,
        FRAMING_ERR     = 0x40,
        PARITY_ERR      = 0x20,
        OVERRUN_ERR     = 0x10,
    };

    enum UcrBits {
// UART Command  Register bits
        RESET_RX        = 0x20,     // reset receiver
        RESET_TX        = 0x30,     // reset transmitter 
        RESET_ERR       = 0x40,     // reset error status 
    };

};

#define UART_PTR_1        ((volatile UartRegs *)( MBAR_ADDRESS + 0x100))



Using structures or classes and enumerations

Using these structure fields off the base address macro affords the register access.

// class and enum method
UART_PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
UART_PTR_1->ucUcr = UartRegs::RESET_RX;
 
if( UART_PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR ) {
    do something about overrun error;

}

This approach generates very efficient code, the same as before as long as compiler 
optimizations (-O) are enabled.
         # basic block 2
        movb    $7, 268435712
        movb    $32, 268435720
        movzbl  268435716, %eax
        testb   $16, %al
        je      L4
         # basic block 3
        movb    $1, %bl
L4:



Using structures or classes and enumerations

To eliminate the last remnant of the preprocessor, and bind the symbol for the 
address of the register block into the scope of the class the following constant is 
added to the class: 

    static UartRegs * const PTR_1; /* UART 1 base address */

};

UartRegs * const UartRegs::PTR_1 = (UartRegs *) (MBAR_ADDRESS + 0x100); 

Using these structure fields off the base address class constant affords the register 
access.
// const pointer method
UartRegs::PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
UartRegs::PTR_1->ucUcr = UartRegs::RESET_RX;
     
if( UartRegs::PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR ) {
    do something about overrun error;
}



Using structures or classes and enumerations

This approach generates the same as before , with the addition of an unused 
constant in the text section. This is due to the explanation above requiring 
constants to allow for the possibility of code taking the address of the 
constant.

.globl __ZN8UartRegs5PTR_1E
        .text
        .align 4
__ZN8UartRegs5PTR_1E:
        .long   268435712
.
.
.
         # basic block 4
        movb    $7, 268435712
        movb    $32, 268435720
        movzbl  268435716, %eax
        testb   $16, %al
        je      L6
         # basic block 5
        movb    $1, %bl
L6:



Using structures or classes and enumerations

Additionally this requires the definition of the constant to only be 
present in a single translation unit, or a multiply defined global error 
will result. Alternatively the constant can be left out of the class and 
declared static such that it only has module scope. This no longer 
binds the symbol to the class name 
static UartRegs * const CONST_UART_PTR_1 = (UartRegs *) (MBAR_ADDRESS + 0x100); 

Using these structure fields off the base address module constant 
affords the register access.
// const static pointer method
CONST_UART_PTR_1->ucUmr = UartRegs::BPC(8) | UartRegs::OP;
CONST_UART_PTR_1->ucUcr = UartRegs::RESET_RX;
     
if(CONST_UART_PTR_1->ucUsrUcsr & UartRegs::OVERRUN_ERR ) {
    do something about overrun error;
}



Using structures or classes and enumerations

This approach generates the same code as before , with the same 
unused constant in the text section. However this time it is at least 
not global and can be re-defined in each module.
 
_ZZ4mainE16CONST_UART_PTR_1:
        .long   268435712
.
.
.
         # basic block 6
        movb    $7, 268435712
        movb    $32, 268435720
        movzbl  268435716, %eax
        testb   $16, %al
        je      L8
         # basic block 7
        movb    $1, %bl



Using bitfields in classes 

As an additional aid to the programmer, individual bits in registers can be broken out symbolically into bitfields.

class UartBits
{
public:
    // mode register
    volatile unsigned char ucBits    : 2;
    volatile unsigned char ucOddP    : 1;
    volatile unsigned char ucForceP  : 1;
    volatile unsigned char ucNp      : 1;
    volatile unsigned char ucBlkErr  : 1;
    volatile unsigned char ucIntFf   : 1;
    volatile unsigned char ucAutoRts : 1;
    unsigned char skip[3];  
    // status register
    volatile unsigned char ucBreak   : 1;
    volatile unsigned char ucFrameEr : 1;
    volatile unsigned char ucParErr  : 1;
    volatile unsigned char ucOverRun : 1;
    volatile unsigned char ucTxEmpty : 1;
    volatile unsigned char ucTxReady : 1;
    volatile unsigned char ucFFull   : 1;
    volatile unsigned char ucRxReady : 1;
    unsigned char skip1[3];
    // command register
    volatile unsigned char ucAutoBd  : 1;
    volatile unsigned char ucCommand : 3;
    volatile unsigned char ucTxDisab : 1;
    volatile unsigned char ucTxEnab  : 1;
    volatile unsigned char ucRxDisab : 1;
    volatile unsigned char ucRxEnab  : 1;
    unsigned char  skip2[3];



Using bitfields in classes 

unsigned char  skip2[3];

    static inline unsigned char BPC( int n ) { return n-5; }

   enum UcCommandBits {

// UART Command  Register bits

        RESET_RX        = 0x2,     // reset receiver

        RESET_TX        = 0x3,     // reset transmitter 

        RESET_ERR       = 0x4,     // reset error status 

    };

 

};

// Base addresses as a macro

#define UARTBITS_PTR_1        ((volatile UartBits *)( MBAR_ADDRESS + 0x100))



Using bitfields in classes

Using these bitfields off the base address macro affords the register access.

// (partial) bitfield method
UARTBITS_PTR_1->ucBits = UartBits::BPC(8);
UARTBITS_PTR_1->ucOddP = 1;
UARTBITS_PTR_1->ucCommand = UartBits::RESET_RX;
         
if( UARTBITS_PTR_1->ucOverRun ) {
do something about overrun error;
}

This approach generates less efficient code than the other methods.
         # basic block 8
        movzbl  268435712, %eax
        orb     $3, %al
        movb    %al, 268435712
        movzbl  268435712, %eax
        orb     $4, %al
        movb    %al, 268435712
        movzbl  268435720, %eax
        andb    $-113, %al
        orb     $32, %al
        movb    %al, 268435720
        movzbl  268435716, %eax
        andb    $16, %al
        testb   %al, %al
        je      L10
         # basic block 9
        movb    $1, %bl



Using bitfields in classes

The bitfield  approach has a number of problems. First bitfields are not 
portable. It is left to each compiler to decide how the bits in the bitfields are 
to be laid out. The first bit defined could be the most significant or the least. 
In this particular case they are least to most significant. Furthermore 
alignment issues as with structures exist but more so. Compilers can allocate 
bit groups into bytes as they see fit for optimization.

Secondly the code generated is not efficient. In the example setting all bits in 
a register to a known value was left out for clarity and would involve many 
bit oriented operations where one register access would suffice. The use of 
unions to make whole register access more efficient exacerbates the 
portability problem as the mapping of union elements onto one another is 
also left to the compiler.



Using bitfields in classes

Third the level of abstraction does not map to the reality of the hardware. In 
this simple example there are problems caused by the way this hardware 
works. The Uart mode register has interesting behavior in that each 
successive access to the register flips the meaning of the register  from mode 
1 to mode 2. Individual read-modify-write operations of the bitfield access 
causes the mode register to flip back and forth. In other cases the 
programmer may want to check if any of a number of bits are active in a 
register, to check if any error bits are on for example. In the bitfield case this 
must be done with successive accesses and bit operations, where as in the 
whole register approach it can be done in one test.

In summation the bitfield abstraction removes a level of control from the 
programmer in favor of an abstraction that is not portable and does not map 
to the hardware reality with good fidelity.



Recommendations

Using the class with enumerations offers benefits without 
compromising code efficiency. Bitfields offer questionable benefit to 
the programmer with a cost in code efficiency. Using a class constant 
pointer to hold the base address of the register bank binds the pointer 
to the class name, but causes a problem with multiply defined 
constants and wastes storage (although a very small cost). Using a 
module static constant as the base pointer does not bind the name to 
any class and uses up additional space. The #define macro of the base 
address seems to yield the same benefits as the module static without 
the wasted space. The recommendation then is to use classes with 
enumerations, and a #define for the base address.
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