
Agile Development 
using Scrum

Duane Strong

Strong Engineering LLC

duanes@strongenging.com



We had a problem in 1968

• NATO conference of 1968 'Software Crisis’

• Massive bugs

• Late

• Failure to deliver working software

• Unhappy stake holders

• Most features unused

• Obsolete on arrival

• Only going to get much, much worse



Roots of the problem
• Agrarian to industrial revolutions

• Similar models, social stratifications

• Workers largely unskilled and uneducated

• Creativity belongs to those who control the means of production

• Little respect for those doing the work



Frederic Taylor 'Taylorism’
• Managers think, workers do

• Managers closely supervise workers

• Standardized tasks

• Quality control by batch inspection and 
rejection, carrot and stick

• Up front planning, specification

• Large 'ceremony' moving from stage to stage, 
waterfall model

• But it did massively increase production



Industrial paradigm fails for 
software development

• Increasing up front planning, scheduling, design made no improvement

• Value creation vs. value extraction

• Complex emergent specification and design

• Impossible to plan entirely before hand

• Impossible to specify completely up front

• Rapid change

• Workers know more than the managers, highly educated and skilled

• “Decision latency” 



Roots of the solution
• William Edwards Deming, Japan WWII reconstruction

• Plan Do Check Act

• Kaizen

• The Toyota Way

• lean manufacturing

• Kanban



A new paradigm shift - agile
• It's not a progression, it's a revolution

• It can't be phased in

• Fundamental thinking, behavior of people and organizations has to 
change

• Many fail to adapt, organizations and individuals

• Results can not be measured in the same ways

• Cargo cults

• Superficial – Mechanical – Competent – Enlightened



'Agile manifesto' 2001
• Value individuals and interactions over processes and tools

• Value working software over comprehensive documentation

• Value customer collaboration over contract negotiation

• Value responding to change over following a plan

It is NOT that the thing on the right has NO value, we just value the thing on 
left more



Early snake oil
• Ironically heavy in prescription. "Follow these steps and silver bullet"

• Badly integrated into existing power structures

• Seen as latest fad

• More money more problems

• False starts, but now converged

• Still, “licensed scrum master”



Enter SCRUM
• Hirotaka Takeuchi and Ikujiro Nonaka 1986 

paper "The New New Product Development 
Game"

• Jeff Sutherland and Ken Schwaber 1995 
conference presentation

• A framework not a methodology, it has to be 
applied as each organization sees fit

• A simple few page description, but like chess 
easy to learn hard to master

• Requires discipline to respect the rules of the 
game, the players, accountability



The Fundamentals
• Embrace change

• Self organize

• Business value focus

• Continuous improvement

• Non interruption

• Customer centric

• Radical transparency



The Values
• Commitment

• To team

• To quality

• To learn and improve

• Focus

• Openness

• Respect

• Courage



The Players
• Small team

• No one player is 'in charge' of the others. Each must collaborate with 
the others

• Self organizing

1. The Product Owner

2. The Development Team

3. The Scrum Master

But they COLABORATE! No hierarchy. No silos. No us vs. them. One team.



The Product Owner
• Is a one person role that injects the business 

perspective into the process

• Represents other stakeholders to the rest of the 
team

• Maintains an overall product vision and roadmap

• Maintains the product backlog (issues) continually 
and in order

• Decides release dates and content



The Development Team
• Self organizes – how much and how to do it

• Develops code, tests, PCB, mechanicals, etc. – cross functional

• Estimates the backlog efforts

• Sets the amount of backlog items to do per sprint



The Scrum Master
• Is a one person role that facilitates the collaborations 

between the product owner and development team 
members.

• Master of no one, master of scrum skills

• Coaches and mentors the players in the game of Scrum

• Shields the team from interference

• Removes obstacles or impediments

• Provides retrospectives

• Guides continuous improvement



Sprints
• Badly named. A rugby thing? Continuous never ending cycles of work 

kept at a maintainable “all day” pace. It’s a value attempt.

• Consistent time boxed iterations of backlog items

• Delivers a working version of software each time

• Best effort to complete, non interruptible but cancellable 

• Comprised of
1. The sprint itself

2. sprint planning

3. daily scrum meetings

4. sprint review

5. sprint retrospective



Why Sprints?
You don’t have to have sprints to be agile but…

• Scrum vs. Kanban, piston engine vs. turbine engine

• Chaos of change vs. sticking to a plan

• Continuous delivery

• Allows reflection and correction

• Provides a sense of velocity



Sprint Planning
• Relies on backlog refinement to make it less onerous 

• Before the sprint starts, all team members

• Get backlog items into a sprint backlog

• Get sufficient definition on items

• Get sufficient estimations

• Get items in priority

• Decide what can get done in the sprint



Daily Scrum Meeting

• SHORT 15 minutes. Stand up. Every day. Maybe

• Three questions
• What did you do?

• What are you doing?

• Any impediments?

• Walk the board
• Issues from right to left

• But make it whatever works for you



Sprint Review
• Share what is DONE – demos, videos, papers

• Get feedback on what the team has done from outside the team

• Get closure on the sprint, celebrate accomplishments

• Determine actual team ‘velocity’, how much a sprint can hold 



Sprint Retrospective
The continuous improvement part 

Scrum Master runs it

Does it have to be at the end of every sprint?

Free food works great

• How has team worked together?

• What did you like?

• What was lacking?

• What failed?

• What did you learn?

• What do you long for going forward?



The Artifacts
1. Product backlog

2. Sprint backlog

3. Sprint deliverable



Part 2
“From the trenches” or “What I wish someone told me when I started”

Overall – don’t be pedantic. There is no existing recipe. Take whatever 
people tell you (even me) in and find your own path.

However, don’t ignore well trodden paths. They are usually well trodden 
for a reason. 



Backlog Refinement
• Continuous not time boxed

• Issues as ‘user stories’
• As a <role> I want <feature> so I can <rationale>

• Issues as behaviors
• Given <context> when <event> then <result>

• Issues as bugs

• Anyone can put anything into the backlog. I will get triaged by the 
product owner

• Error on the side of putting things in the backlog vs. dropping the ball

• Ok if not fully fleshed out

• Break down large stories into issues that can be sprint-ified



Visualizing Progress

• Transparency - information radiators

• Burn down or others

• Kanban (Project) board

• No status reports! 



Velocity

How many story points on average can the team do in a sprint?

• What’s a story point?
• Is it hours?

• Is it days?

• Is it arbitrary?

• Non linear due to cone of uncertainty

• People are bad at absolute estimates, but good at relative ones



Planning Poker
I have an idea how hard this story is.

You have an idea how hard this story is.

Without influencing each other

ahead of time, put your cards on the

table.

If we don’t have the same estimate, 

one of us knows something the other

does not. Figure that out.



Failure
Failure is part of emergent design. Failure on an attempt to add value 
without recovering some knowledge about that failure is waste.

We don’t strive to fail but…

• We should accept it as part of the value creation exercise

• Make failures quick to discover

• Keep failure cheap

• Figure out how to extract knowledge from failure

This is the purpose of the sprint retrospective



Kanban/Scrumban
Scrum is not the only way to be agile. Many teams have decided that 
Scrum requires too much overhead. 

• Kanban focuses on flow of issues rather than fixed sprints

• #NoEstimates – size issues to be the unit of work, estimate by count of 
issues.

• May be a better fit with Continuous Integration and Continuous 
Deployment

• Can be applied to “what you do now” as opposed to a sea change


	Slide 1: Agile Development using Scrum 
	Slide 2: We had a problem in 1968
	Slide 3: Roots of the problem
	Slide 4: Frederic Taylor 'Taylorism’
	Slide 5: Industrial paradigm fails for software development
	Slide 6: Roots of the solution
	Slide 7: A new paradigm shift - agile
	Slide 8: 'Agile manifesto' 2001
	Slide 9: Early snake oil
	Slide 10: Enter SCRUM
	Slide 11: The Fundamentals
	Slide 12: The Values
	Slide 13: The Players
	Slide 14: The Product Owner
	Slide 15: The Development Team
	Slide 16: The Scrum Master
	Slide 17: Sprints
	Slide 18: Why Sprints?
	Slide 19: Sprint Planning
	Slide 20: Daily Scrum Meeting
	Slide 21: Sprint Review
	Slide 22: Sprint Retrospective
	Slide 23: The Artifacts
	Slide 24: Part 2
	Slide 25: Backlog Refinement
	Slide 26: Visualizing Progress
	Slide 27: Velocity
	Slide 28: Planning Poker
	Slide 29: Failure
	Slide 30: Kanban/Scrumban

